Question	Scheme	Marks	AOs
1 (a) (i)	Uses $\frac{dy}{dx} = -3$ at $x = 2 \implies 12a + 60 - 39 = -3$	M1	1.1b
	Solves a correct equation and shows one correct intermediate step $12a+60-39 = -3 \Rightarrow 12a = -24 \Rightarrow a = -2*$	A1*	2.1
(a) (ii)	Uses the fact that (2,10) lies on C 10 = 8 a + 60 - 78 + b	M1	3.1a
	Subs $a = -2$ into $10 = 8a + 60 - 78 + b \Longrightarrow b = 44$	A1	1.1b
		(4)	
(b)	$f(x) = -2x^3 + 15x^2 - 39x + 44 \Longrightarrow f'(x) = -6x^2 + 30x - 39$	B1	1.1b
	Attempts to show that $-6x^2 + 30x - 39$ has no roots Eg. calculates $b^2 - 4ac = 30^2 - 4 \times -6 \times -39 = -36$	M1	3.1a
	States that as $f'(x) \neq 0 \Rightarrow$ hence $f(x)$ has no turning points *	A1*	2.4
		(3)	
(c)	$-2x^{3} + 15x^{2} - 39x + 44 \equiv (x - 4)(-2x^{2} + 7x - 11)$	M1 A1	1.1b 1.1b
		(2)	
(d)	Deduces either intercept. $(0,44)$ or $(20,0)$	B1 ft	1.1b
	Deduces both intercepts $(0,44)$ and $(20,0)$	B1 ft	2.2a
		(2)	
		(11	marks)

Notes

(a)(i)

M1: Attempts to use $\frac{dy}{dx} = -3$ at x = 2 to form an equation in *a*. Condone slips but expect to see two of the powers reduced correctly

A1*: Correct differentiation with one correct intermediate step before a = -2

(a)(ii)

M1: Attempts to use the fact that (2,10) lies on *C* by setting up an equation in *a* and *b* with a = -2 leading to b = ...

A1: b = 44

(b)

B1: $f'(x) = -6x^2 + 30x - 39$ oe

M1: Correct attempt to show that " $-6x^2 + 30x - 39$ " has no roots. This could involve an attempt at

- finding the numerical value of $b^2 4ac$
- finding the roots of $-6x^2 + 30x 39$ using the quadratic formula (or their calculator)
- completing the square for $-6x^2 + 30x 39$

A1*: A fully correct method with reason and conclusion. Eg as $b^2 - 4ac = -36 < 0$, $f'(x) \neq 0$ meaning that no stationary points exist

(c)

M1: For an attempt at division (seen or implied) Eg $-2x^3 + 15x^2 - 39x + b \equiv (x-4)\left(-2x^2...\pm\frac{b}{4}\right)$ A1: $(x-4)\left(-2x^2 + 7x - 11\right)$ Sight of the quadratic with no incorrect working seen can score both marks.

(d)

See scheme. You can follow through on their value for b

Questio	n Scheme	Marks	AOs			
2(a)	$9x - x^3 = x\left(9 - x^2\right)$	M1	1.1b			
	$9x - x^3 = x(3 - x)(3 + x)$ oe	A1	1.1b			
		(2)				
(b)	A cubic with correct orientation	B1	1.1b			
	$\begin{array}{c c} \hline & -3 & 0 \\ \hline & & \\ \hline \\ \hline$	B1	1.1b			
		(2)				
(c)	$y = 9x - x^3 \Rightarrow \frac{dy}{dx} = 9 - 3x^2 = 0 \Rightarrow x = (\pm)\sqrt{3} \Rightarrow y = \dots$	M1	3.1a			
	$y = (\pm) 6\sqrt{3}$	A1	1.1b			
	$\left\{ k \in \Box : -6\sqrt{3} < k < 6\sqrt{3} \right\} \text{oe}$	A1ft	2.5			
	Notes					
(a) M1: A1:	Takes out a factor of x or $-x$. Scored for $\pm x(\pm 9 \pm x^2)$ May be implied be answer or $\pm x(\pm x \pm 3)(\pm x \pm 3)$. Also allow if they attempt to take out a factor of $(\pm x \pm 3)$ so score for (EXCORPORE TO THE STATES AND ALL AND AL	by the correst $\pm x \pm 3$ $(\pm 3x)$	$x \pm x^2$)			
	Allow eg $-x(x-3)(x+3)$, $x(x-3)(-x-3)$ or other equivalent expressions Condone an = 0 appearing on the end and condone eg x written as $(x+0)$.					
(b)						
B1:	: Correct shape (negative cubic) appearing anywhere on a set of axes. It must have a minimum to the left and maximum to the right. Be tolerant of pen slips. Judge the intent of the shape. (see examples)					
B1:	Passes through each of the origin, $(3, 0)$ and $(-3, 0)$ and no other points on the <i>x</i> axis. (The graph should not turn on any of these points). The points may be indicated as just 3 and -3 on the axes. Condone <i>x</i> and <i>y</i> to be the wrong way round eg $(0, -3)$ for $(-3, 0)$ as long as it is on the correct axis but do not allow $(-3, 0)$ to be labelled as $(3, 0)$.					

Question

Sata CI(A)

Scheme	Marks	AOs
= 0	M1	2.1
3		

	(6 n	narks)
	(6)	
$\{f(x) = \}2x^2 - 10x^{\frac{3}{2}} + 14x - 5$	A1	1.1b
Note: $a = -15$ and $b = 14$		
f'(4) = 0 and $f(4) = 3in order to find volves for a and h$	ddM1	3.1a
Full and complete method using the given information		
Deduces that $c = -5$	B1	2.2a
Integrates $f'(x) = 4x + a\sqrt{x} + b \Rightarrow \{f(x) = \}2x^2 + \frac{2}{3}ax^{\frac{3}{2}} + bx \{+c\}$	M1 A1ft	1.1b 1.1b
$5031(4) = 0 \implies 10 + 2a + b = 0$	IVII	2.1

Notes:

B1:

- M1: For the key step in setting $f'(4) = 0 \Longrightarrow 16 + 2a + b = 0$ to set up an equation in a and b. Condone slips.
- M1: For attempting to integrate f'(x). Award for $x^n \to x^{n+1}$ or $b \to bx$ This may come after finding values for *a* or *b* or both.

A1ft:
$$\{f(x) = \}2x^2 + \frac{2}{3}ax^{\frac{3}{2}} + bx \ \{+c\} \text{ or, e.g., } \{f(x) = \}2x^2 + \frac{2}{3}ax^{\frac{3}{2}} + (-16 - 2a)x \ \{+c\}$$

Allow ft on their *b* in terms of *a* if they substituted in from their $f'(4) = 0 \Longrightarrow 16 + 2a + b = 0$ Do not ft if they have a value(s) for *a* or *b* This may be left unsimplified but the indices must be processed. isw once the mark is awarded. Condone the omission of the + *c* This accuracy mark requires only the previous M mark to be scored. Deduces that the constant term in f(x) is -5. Note that deducing b = -5 is B0. It must be the constant in a changed function.

ddM1: For a complete strategy to find values for both *a* and *b*.

Do not be concerned about the logistics of how they solve the simultaneous equations – this may be done on a calculator.

Note: a = -15 and b = 14

This is dependent on **both** previous method marks and so must include use of both

• f'(4) = 0 (their 16 + 2a + b = 0 o.e.)

•
$$f(4) = 3$$
 (their $32 + \frac{16}{3}a + 4b - 5 = 3$ o.e.)

A1: $\{f(x)=\}2x^2-10x^{\frac{1}{2}}+14x-5 \text{ or exact simplified equivalent, e.g., use of } x\sqrt{x} \text{ in place of } x^{\frac{1}{2}}$ Apply isw once a correct expression is seen.

Question	on Scheme Marks					
4(a)(i)	$\frac{dy}{dx} = 20x^3 - 72x^2 + 84x - 32$	M1 A1	1.1b 1.1b			
(ii)	$\frac{d^2 y}{dx^2} = 60x^2 - 144x + 84$	A1ft	1.1b			
		(3)				
(b)(i)	$x = 1 \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 20 - 72 + 84 - 32$	M1	1.1b			
	$\frac{dy}{dx} = 0$ so there is a stationary point at $x = 1$	A1	2.1			
	Alternative for (b)(i)					
	$20x^{3} - 72x^{2} + 84x - 32 = 4(x-1)^{2}(5x-8) = 0 \Longrightarrow x = \dots$	M1	1.1b			
	When $x = 1$, $\frac{dy}{dx} = 0$ so there is a stationary point	A1	2.1			
(b)(ii)	Note that in (b)(ii) there are no marks for <u>just</u> evaluating $\left(\frac{d^2y}{dx^2}\right)_{x=1}$					
	E.g. $\left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right)_{x=0.8} = \dots \left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right)_{x=1.2} = \dots$	M1	2.1			
	$\left(\frac{d^2 y}{dx^2}\right)_{x=0.8} > 0, \qquad \left(\frac{d^2 y}{dx^2}\right)_{x=1.2} < 0$ Hence point of inflection	A1	2.2a			
		(4)				
	Alternative 1 for (b)(ii)					
	$\left(\frac{d^2 y}{dx^2}\right)_{x=1} = 60x^2 - 144x + 84 = 0 \text{ (is inconclusive)}$ $\left(\frac{d^3 y}{dx^3}\right) = 120x - 144 \Longrightarrow \left(\frac{d^3 y}{dx^3}\right)_{x=1} = \dots$	M1	2.1			
	$\left(\frac{d^2 y}{dx^2}\right)_{x=1} = 0 \text{and} \left(\frac{d^3 y}{dx^3}\right)_{x=1} \neq 0$ Hence point of inflection	A1	2.2a			
	Alternative 2 for (b)(ii)					
	E.g. $\left(\frac{dy}{dx}\right)_{x=0.8} = \dots \left(\frac{dy}{dx}\right)_{x=1.2} = \dots$	M1	2.1			
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{x=0.8} < 0, \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{x=1.2} < 0$	A1	2.2a			
	Hence point of inflection					
		/-	• `			
	Notes	(7	marks)			
(a)(i) M1: $x^n \rightarrow$ A1: $\frac{dy}{dx} =$ (a)(ii)	x^{n-1} for at least one power of x $20x^3 - 72x^2 + 84x - 32$					

A1ft: Achieves a correct $\frac{d^2 y}{dx^2}$ for their $\frac{dy}{dx} = 20x^3 - 72x^2 + 84x - 32$ (b)(i) M1: Substitutes x = 1 into their $\frac{dy}{dr}$ A1: Obtains $\frac{dy}{dx} = 0$ following a correct derivative and makes a conclusion which can be minimal e.g. tick, QED etc. which may be in a preamble e.g. stationary point when $\frac{dy}{dt} = 0$ and then shows $\frac{dy}{dr} = 0$ **Alternative:** M1: Attempts to solve $\frac{dy}{dx} = 0$ by factorisation. This may be by using the factor of (x - 1) or possibly using a calculator to find the roots and showing the factorisation. Note that they may divide by 4 before factorising which is acceptable. Need to either see either $4(x-1)^2(5x-8)$ or $(x-1)^2(5x-8)$ for the factorisation or $x=\frac{8}{5}$ and x=1 seen as the roots. A1: Obtains x = 1 and makes a conclusion as above (b)(ii)M1: Considers the value of the second derivative either side of x = 1. Do not be too concerned with the interval for the method mark. (NB $\frac{d^2 y}{dx^2} = (x-1)(60x-84)$ so may use this factorised form when considering x < 1, x > 1 for sign change of second derivative) A1: Fully correct work including a correct $\frac{d^2y}{dr^2}$ with a reasoned conclusion indicating that the stationary point is a point of inflection. Sufficient reason is e.g. "sign change"/ ">0, < 0". If values are given they should be correct (but be generous with accuracy) but also just allow ">0" and "< 0" provided they are correctly paired. The interval must be where x < 1.4Alternative 1 for (b)(ii) M1: Shows that second derivative at x = 1 is zero and then finds the third derivative at x = 1A1: Fully correct work including a correct $\frac{d^2y}{dr^2}$ with a reasoned conclusion indicating that stationary point is a point of inflection. Sufficient reason is " $\neq 0$ " but must follow a correct third derivative and a correct value if evaluated. For reference $\left(\frac{d^3y}{dx^3}\right)_{1} = -24$ Alternative 2 for (b)(ii) M1: Considers the value of the first derivative either side of x = 1. Do not be too concerned with the interval for the method mark. A1: Fully correct work with a reasoned conclusion indicating that stationary point is a point of inflection. Sufficient reason is e.g. "same sign"/"both negative"/"< 0, < 0". If values are given they should be correct (but be generous with accuracy). The interval must be where x < 1.40.7 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.8 x -32 -3.2 -1.62 -0.64 -0.14 f'(x) -24.3 -17.92 -12.74 -8.64 -5.5 0 57.6 46.2 f''(x) 84 70.2 36 27 19.2 12.6 7.2 3 0

x	1.1	1.2	1.3	1.4	1.5	1.6	1.7
f'(x)	-0.1	-0.32	-0.54	-0.64	-0.5	0	0.98
f''(x)	-1.8	-2.4	-1.8	0	3	7.2	12.6

Question	Scheme	Marks	AOs	
5 (a)	2 < <i>x</i> < 6	B1	1.1b	
		(1)		
(b)	States either $k > 8$ or $k < 0$	M1	3.1a	
	States e.g. $\{k: k > 8\} \cup \{k: k < 0\}$	A1	2.5	
		(2)		
(c)	Please see notes for alternatives			
	States $y = ax(x-6)^2$ or $f(x) = ax(x-6)^2$	M1	1.1b	
	Substitutes (2,8) into $y = ax(x-6)^2$ and attempts to find <i>a</i>	dM1	3.1a	
	$y = \frac{1}{4}x(x-6)^2$ or $f(x) = \frac{1}{4}x(x-6)^2$ o.e	A1	2.1	
		(3)		
		(6 marks)	
Notes: Watch for answers written by the question. If they are beside the question and in				

the answer space, the one in the answer space takes precedence

(a)

B1: Deduces 2 < x < 6 o.e. such as x > 2, x < 6 x > 2 and x < 6 $\{x : x > 2\} \cap \{x : x < 6\}$ $x \in (2, 6)$

Condone attempts in which set notation is incorrectly attempted but correct values can be seen or implied E.g. $\{x > 2\} \cap \{x < 6\} \{x > 2, x < 6\}$. Allow just the open interval (2, 6)

Do not allow for incorrect inequalities such as e.g. x > 2 or x < 6, $\{x : x > 2\} \cup \{x : x < 6\}$ $x \in [2, 6]$

(b)

- M1: Establishes a correct method by finding one of the (correct) inequalities States either k > 8 (condone $k \ge 8$) or k < 0 (condone $k \le 0$) Condone for this mark $y \leftrightarrow k$ or $f(x) \leftrightarrow k$ and 8 < k < 0
- A1: Fully correct solution in the form $\{k:k>8\} \cup \{k:k<0\}$ or $\{k|k>8\} \cup \{k|k<0\}$ either way around but condone $\{k<0\} \cup \{k>8\}$, $\{k:k<0\cup k>8\}$, $\{k<0\cup k>8\}$. It is not necessary to mention \mathbb{R} , e.g. $\{k:k\in\mathbb{R}, k>8\} \cup \{k:k\in\mathbb{R}, k<0\}$ Look for $\{\}$ and \cup

Do not allow solutions not in set notation such as k < 0 or k > 8.

- (c)
- M1: Realises that the equation of *C* is of the form $y = ax(x-6)^2$. Condone with a = 1 for this mark. So award for sight of $ax(x-6)^2$ even with a = 1
- dM1: Substitutes (2,8) into the form $y = ax(x-6)^2$ and attempts to find the value for *a*. It is dependent upon having an equation, which the (y = ...) may be implied, of the correct form.

A1: Uses all of the information to form a correct **equation** for $C = y = \frac{1}{4}x(x-6)^2$ o.e.

ISW after a correct answer. Condone $f(x) = \frac{1}{4}x(x-6)^2$ but not $C = \frac{1}{4}x(x-6)^2$.

Allow this to be written down for all 3 marks

Examples of alternative methods

Alternative I part (c):

Using the form $y = ax^3 + bx^2 + cx$ and setting up then solving simultaneous equations. There are various versions of this but can be marked similarly

- M1: Realises that the equation of *C* is of the form $y = ax^3 + bx^2 + cx$ and forms two equations in *a*, *b* and *c*. Condone with a = 1 for this mark. Note that the form $y = ax^3 + bx^2 + cx + d$ is M0 until *d* is set equal to 0. There are four equations that could be formed, only two are necessary for this mark. Condone slips Using $(6, 0) \implies 216a + 36b + 6c = 0$ Using $(2, 8) \implies 8a + 4b + 2c = 8$ Using $\frac{dy}{dx} = 0$ at $x = 2 \implies 12a + 4b + c = 0$ Using $\frac{dy}{dx} = 0$ at $x = 6 \implies 108a + 12b + c = 0$
- dM1: Forms and solves three different equations, one of which must be using (2, 8) to find values for *a*, *b* and *c*. A calculator can be used to solve the equations
- A1: Uses all of the information to form a correct equation for $C = y = \frac{1}{4}x^3 3x^2 + 9x$ o.e.

ISW after a correct answer. Condone $f(x) = \frac{1}{4}x^3 - 3x^2 + 9x$

Alternative II part (c) Using the gradient and integrating

M1: Realises that the gradient of *C* is zero at 2 and 6 so sets f'(x) = k(x-2)(x-6) oe **and** attempts to integrate. Condone with k = 1

dM1: Substitutes x = 2, y = 8 into $f(x) = k(...x^3 + ...x + ...)$ and finds a value for k

A1: Uses all of the information to form a correct equation for $C = y = \frac{3}{4} \left(\frac{1}{3}x^3 - 4x^2 + 12x \right)$ o.e.

ISW after a correct answer. Condone $f(x) = \frac{3}{4} \left(\frac{1}{3}x^3 - 4x^2 + 12x \right)$

.....

Question	Scheme	Marks	AOs
6 (a)	Sets up an allowable equation using volume = 240 E.g. $\frac{1}{2}r^2 \times 0.8h = 240 \Rightarrow h = \frac{600}{r^2}$ o.e.	M1 A1	3.4 1.1b
	Attempts to substitute their $h = \frac{600}{r^2}$ into $(S =)\frac{1}{2}r^2 \times 0.8 + \frac{1}{2}r^2 \times 0.8 + 2rh + 0.8rh$	dM1	3.4
	$S = 0.8r^{2} + 2.8rh = 0.8r^{2} + 2.8 \times \frac{600}{r} = 0.8r^{2} + \frac{1680}{r} *$	A1*	2.1
		(4)	
(b)	$\left(\frac{\mathrm{d}S}{\mathrm{d}r}\right) = 1.6r - \frac{1680}{r^2}$	M1 A1	3.1a 1.1b
	Sets $\frac{dS}{dr} = 0 \Rightarrow r^3 = 1050$ r = awrt 10.2	dM1 A1	2.1 1.1b
		(4)	
(c)	Attempts to substitute their positive r into $\left(\frac{d^2S}{dr^2}\right) = 1.6 + \frac{3360}{r^3}$	M1	1.1b
	E.g. Correct $\frac{d^2S}{dr^2} = 1.6 + \frac{3360}{r^3}$ with $\frac{d^2S}{dr^2}_{r=10.2} = 5 > 0$ proving a minimum value of S	A1	1.1b
		(2)	
	1	(10	0 marks)
Notes:			

Volume = $0.4r^2h$

Total surface area = $2rh+0.8r^2+0.8rh$

M1: Attempts to use the fact that the volume of the toy is 240 cm^3

Sight of $\frac{1}{2}r^2 \times 0.8 \times h = 240$ leading to h = ... or rh = ... scores this mark But condone an equation of the correct form so allow for $kr^2h = 240 \Rightarrow h = ...$ or rh = ...

A1: A correct expression for $h = \frac{600}{r^2}$ or $rh = \frac{600}{r}$ which may be left unsimplified.

This may be implied when you see an expression for S or part of S E.g $2rh = 2r \times \frac{600}{r^2}$

dM1: Attempts to substitute their
$$h = \frac{a}{r^2}$$
 o.e. such as $hr = \frac{a}{r}$ into a **correct** expression for *S*

Sight of
$$\frac{1}{2}r^2 \times 0.8 + \frac{1}{2}r^2 \times 0.8 + rh + rh + 0.8rh$$
 with an appropriate substitution

Simplified versions such as $0.8r^2 + 2rh + 0.8rh$ used with an appropriate substitution is fine. A1*: Correct work leading to the given result.

S =, SA = or surface area = must be seen at least once in the correct place The method must be made clear so expect to see evidence. For example

$$S = 0.8r^{2} + 2rh + 0.8rh \Longrightarrow S = 0.8r^{2} + 2r \times \frac{600}{r^{2}} + 0.8r \times \frac{600}{r^{2}} \Longrightarrow S = 0.8r^{2} + \frac{1680}{r}$$
 would be fine.

(b) There is no requirement to see $\frac{dS}{dr}$ in part (b). It may even be called $\frac{dy}{dx}$.

M1: Achieves a derivative of the form $pr \pm \frac{q}{r^2}$ where p and q are non-zero constants

A1: Achieves $\left(\frac{\mathrm{d}S}{\mathrm{d}r}\right) = 1.6r - \frac{1680}{r^2}$

dM1: Sets or implies that their $\frac{dS}{dr} = 0$ and proceeds to $mr^3 = n$, $m \times n > 0$. It is dependent upon a correct attempt at differentiation. This mark may be implied by a correct answer to their $pr - \frac{q}{r^2} = 0$

A1:
$$r = \text{awrt } 10.2 \text{ or } \sqrt[3]{1050}$$

(c)

M1: Attempts to substitute their positive r (found in (b)) into $\left(\frac{d^2S}{dr^2}\right)e\pm\frac{f}{r^3}$ where e and f are non zero and finds its value or sign.

Alternatively considers the sign of $\left(\frac{d^2S}{dr^2}\right) = e \pm \frac{f}{r^3}$ (at their positive *r* found in (b))

Condone the $\frac{d^2 S}{dr^2}$ to be $\frac{d^2 y}{dx^2}$ or being absent, but only for this mark. **A1:** States that $\frac{d^2 S}{dr^2}$ or $S'' = 1.6 + \frac{3360}{r^3} = awrt 5 > 0$ proving a minimum value of S

This is dependent upon having achieved $r = a \operatorname{wrt} 10$ and a correct $\frac{d^2 S}{dr^2} = 1.6 + \frac{3360}{r^3}$ It can be argued without finding the value of $\frac{d^2 S}{dr^2}$. E.g. $\frac{d^2 S}{dr^2} = 1.6 + \frac{3360}{r^3} > 0$ as r > 0, so minimum value of *S*. For consistency it is also dependent upon having achieved $r = a \operatorname{wrt} 10$ Do **NOT** allow $\frac{d^2 y}{dx^2}$ for this mark